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Abstract

Background—Single nucleotide polymorphisms (SNPs) in pathways influencing lymph node 

(LN) metastasis and estrogen receptor (ER) status in breast cancer may partially explain inter-

patient variability in prognosis. We examined 154 SNPs in 12 metastasis-related genes for 

associations with breast cancer risk, stratified by LN and ER status, in European-American (EA) 

and African-American (AA) women.

Methods—2,671 women enrolled in the Women’s Circle of Health Study were genotyped. 

Pathway analyses were conducted using the adaptive rank truncated product (ARTP) method, with 

pARTP≤0.10 as significant. Multi-allelic risk scores were created for the ARTP-significant gene(s). 

Single-SNP and risk score associations were modeled using logistic regression, with false 

discovery rate (FDR) p-value adjustment.

Results—Although single-SNP associations were not significant at pFDR<0.05, several genes 

were significant in the ARTP analyses. In AA women, significant ARTP gene-level associations 

included CDH1 with LN+ (pARTP=0.10; multi-allelic OR=1.13, 95% CI 1.07–1.19, pFDR=0.0003) 

and SIPA1 with ER− breast cancer (pARTP=0.10; multi-allelic OR=1.16, 95% CI 1.02–1.31, 

pFDR=0.03). In EA women, MTA2 was associated with overall breast cancer risk (pARTP=0.004), 

regardless of ER status, and with LN− disease (pARTP=0.01). Also significant were SATB1 in ER− 
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(pARTP=0.03; multi-allelic OR=1.12, 95% CI 1.05–1.20, pFDR=0.003) and KISS1 in LN− 

(pARTP=0.10; multi-allelic OR=1.18, 95% CI 1.08–1.29, pFDR=0.002) analyses. Among LN+ 

cases, significant ARTP associations were observed for SNAI1, CD82, NME1, and CTNNB1 
(multi-allelic OR=1.09, 95% CI 1.04–1.14, pFDR=0.001).

Conclusion—Our findings suggest that variants in several metastasis genes may affect breast 

cancer risk by LN or ER status, although verification in larger studies is required.
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American

1. Introduction

Breast cancer prognosis is excellent when diagnosed and treated at an early stage, but is 

poorer when metastatic disease is present. The presence of axillary lymph node (LN) 

metastases at diagnosis is a strong risk factor for future recurrence and poorer prognosis. 

Once metastasized to distant sites, breast cancer is generally considered incurable and the 

majority of breast cancer-associated mortality results from metastatic disease [1]. Breast 

cancer mortality rates are higher among African-American (AA) women compared to 

European-American (EA) women, for reasons that are not fully understood. AA women tend 

to present with breast cancer at a younger age, with more aggressive tumor characteristics 

and a greater likelihood of disease progression and recurrence [2,3]. It is therefore critical to 

identify mechanisms of metastasis, particularly those that may differentially affect AA and 

EA patients.

Inherited genetic variation in metastasis-associated genes might partially explain inter-

patient variability in successful metastatic dissemination and colonization [4]. A great 

number of metastasis-associated genes have been identified, including those involved in 

epithelial-mesenchymal transition (EMT), metastasis suppressor genes, and others [5].

EMT has been hypothesized as a mechanism by which tumor cells acquire metastatic 

potential, and genes involved in this process include E-cadherin (CDH1), Snail (SNAI1), and 

β-catenin (CTNNB1) [6]. SATB homeobox 1 (SATB1) is a genome organizing protein, 

which has been shown to affect expression of many genes involved in metastasis, including 

EMT-related genes [7]. Metastasis suppressor genes are those that can inhibit metastatic 

formation without affecting primary tumor growth, and include BRMS1, CDH1, CD82/
KAI1, KISS1, and NME1 [8]. These genes belong to diverse pathways, including gene 

transcription, cell adhesion, extracellular matrix remodeling, and apoptosis. Metastasis-

associated 1 family members (MTA1, MTA2, and MTA3) are part of estrogen receptor (ER) 

signaling pathways and also interact with the EMT-related genes SNAI1 and CDH1 [9]. 

Finally, the metastasis efficiency modifying gene SIPA1 alters cell adhesion [10] and 

promotes metastasis in vivo [11].

The purpose of this study was to examine common genetic variants in metastasis-related 

genes for associations with breast cancer risk, stratified by ER and LN status, and likelihood 
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of ER− and LN+ tumors in both EA and AA women, using a combination of single-SNP and 

gene-based analyses. We selected 12 metastasis-associated genes (BRMS1, CDH1, CD82/
KAI1, CTNNB1, KISS1, MTA1, MTA2, MTA3, NME1, SATB1, SIPA1, and SNAI1) for 

analysis, focusing on those with few or no previously published studies in breast cancer.

2. Materials and Methods

2.1. Study population

The Women’s Circle of Health Study (WCHS) is an ongoing case-control study designed to 

examine the role of genetic and non-genetic factors in relation to risk of breast cancer in AA 

and EA women. The study design, enrollment criteria, and collection of biospecimens and 

questionnaire data have previously been described in detail [12,13]. Eligible cases were 

women who self-identified as AA or EA, were 20–75 years of age at diagnosis, had no 

previous history of cancer other than non-melanoma skin cancer, were diagnosed with 

primary, incident, histologically confirmed invasive breast cancer or ductal carcinoma in situ 

(DCIS), and were English speaking. In New York City, cases were identified through 

collaborating hospitals in Manhattan, Brooklyn, Bronx, and Queens, and in New Jersey, 

rapid case ascertainment using the State Cancer Registry was conducted. Controls were 

identified contemporaneously using random digit dialing and had the same inclusion criteria 

as cases, but with no history of any cancer diagnosis other than non-melanoma skin cancer. 

Controls were frequency matched to cases by self-reported race, 5-year age categories, and 

telephone exchange (New York City) or county of residence (New Jersey). In New Jersey, 

AA controls were also invited to participate through community recruitment events [14]. 

Following agreement to participate, in-person interviews were conducted to complete 

informed consent and an extensive epidemiologic questionnaire. Blood and/or saliva samples 

were collected for later extraction of DNA. Tumor characteristics were abstracted from 

pathology reports.

This study was approved by the Institutional Review Boards at Roswell Park Cancer 

Institute (RPCI), the Rutgers Cancer Institute of New Jersey (CINJ), the Icahn School of 

Medicine at Mount Sinai, and the participating hospitals in New York City.

2.2. DNA sample preparation

Blood and saliva were collected as sources of genomic DNA, which was isolated from blood 

using FlexiGene™ DNA isolation kits (Qiagen Inc., Valencia, CA) and from Oragene™ 

(DNA Genotek Inc., Kanata, Ontario, Canada) saliva sample collection kits, according to the 

respective manufacturer’s protocols. Genomic DNA was evaluated and quantitated by 

Nanodrop UV-spectrometer (Thermo Fisher Scientific Inc., Wilmington, DE) and 

PicoGreen-based fluorometric assay (Molecular Probes, Invitrogen Inc., Carlsbad, CA), and 

stored at −80°C until analysis.

2.3. SNP selection

SNPs for the studied genes were chosen using the SNPInfo candidate gene SNP selection 

pipeline (National Institutes of Environmental Health Sciences (http://

snpinfo.niehs.nih.gov/)) [15], which selects multi-population tag SNPs based on HapMap 
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genotype and linkage disequilibrium (LD) data. For each gene, SNPs were identified for the 

CEU (Utah residents with Northern and Western European ancestry) and YRI (Yoruba in 

Ibadan, Nigeria) populations using the following settings: 5kb upstream and downstream 

flanking regions, 0.8 tagging proportion cutoff, 0.05 minor allele frequency (MAF) cutoff, 

0.8 LD threshold, minimum of two SNPs tagged by a given tag SNP, and minimum of one 

tag SNP tagged per gene. In addition to the tagging SNPs, we also identified several 

validated SNPs using the National Center for Biotechnology Information dbSNP database 

(http://www.ncbi.nlm.nih.gov/snp/) that had MAF >0.05 in the CEU and/or YRI populations 

and were either located in coding or near gene/untranslated regions or had been previously 

studied (rs1052566, rs3116068 (BRMS1); rs2306364, rs3741378, rs75894763 (SIPA1)). A 

total of 154 tag and candidate SNPs were ultimately selected for genotyping (Supplementary 

Table 1).

2.4. Genotyping and quality control

Genotype and quality control/assurance methods have been described in detail previously 

[13]. Genotyping was conducted on all participants who were enrolled in the study through 

June 2011 and had sufficient DNA available for analysis. SNPs were genotyped using the 

Illumina GoldenGate assay (Illumina Inc., San Diego, CA), with five percent duplicates and 

two sets of in-house trio samples included for quality control purposes. The concordance 

among blind duplicate pairs was >99.9%. The average successful genotyping rate for each 

sample and each SNP was >95%. As shown in Supplementary Table 1, 22 SNPs were 

excluded from further analyses because they were monomorphic (n=1), violated Hardy-

Weinberg equilibrium (p<0.00001; n=8), or had low call rate (<98%) in EA and/or AA 

controls (n=9), or had MAF <5% in both EA and AA controls (n=4), leaving 132 SNPs for 

analysis.

2.5. Genetic ancestry estimate

A previously validated panel of 100 ancestry informative markers (AIMs) was also 

genotyped to ascertain genetic ancestry and control for population admixture [16]. Ninety-

five AIMs were successfully genotyped and, based on this genotype data, estimates of 

European and African ancestry were obtained using the STRUCTURE program [17]. We 

excluded 41 women with self-reported race as “other” and 12 women with ≥85% estimated 

ancestry discordant with their self-reported race (n=11 in AAs and n=1 in EAs). Proportion 

of EA genetic ancestry was included as a continuous covariate in statistical analyses.

2.6. Statistical analysis

The final dataset included 2,671 women: 658 EA cases, 649 EA controls, 621 AA cases, and 

743 AA controls. ER and LN status was available for 943 and 975 cases, respectively. All 

analyses were conducted for EA and AA participants separately. Demographic variables and 

tumor characteristics were compared between groups using Chi-squared, Fisher’s exact, or t-

tests, as appropriate. Genotype and allele frequencies were compared between EA and AA 

controls using Chi-squared tests, and a Bonferroni correction was applied to adjust for 

multiple comparisons.
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Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence 

intervals (CI) for 132 SNPs in association with the study outcomes (risk of breast cancer in 

all cases, risk of breast cancer limited to invasive cases, risk of breast cancer stratified by LN 

and ER status, and case-case comparisons of LN and ER status). For each SNP, codominant, 

dominant, recessive, and additive genetic models were tested, using the homozygous 

common genotype in the EA group as the reference category. Age and proportion of EA 

genetic ancestry were chosen a priori as covariates for single-SNP analyses. All analyses 

were performed separately in AA and EA women, using the same genotype as reference 

category to facilitate comparisons between the two groups. False discovery rate testing was 

implemented to control for multiple comparisons [18]. Chi-squared and t-tests, logistic 

regression, and false discovery rate analyses were performed using SAS version 9.3.

To consider all markers jointly, pathway analyses were conducted using the adaptive rank 

truncated product method (ARTP). The ARTP method is a gene-based approach to pathway 

analysis that can confer a statistical power advantage in situations in which the causal variant 

is located in genes with fewer SNPs within a pathway, because it limits the effect of many 

SNPs in the larger gene(s) with null associations [19]. SNPs with MAF <0.05 in either EA 

(n=22) or AA (n=1) control groups were excluded from ARTP analysis in that group, 

leaving a total of 110 and 131 SNPs available for analysis in EA and AA participants, 

respectively. LD statistics generated for all SNP pairs in EA and AA controls were used to 

further filter SNPs in strong LD, defined as r2 >0.80 between any two markers. For each pair 

or group of SNPs in strong LD, the SNP with the strongest single-SNP association was 

retained. This resulted in a final set of 87 independent SNPs for EA participants and 122 

independent SNPs for AA participants. For power considerations, SNPs with variant 

homozygous genotype frequencies ≤10% were collapsed to combine the heterozygous and 

variant homozygous genotype categories.

The ARTP method relies on user-defined pathways. To identify interaction networks 

between the 12 genes we selected for genotyping, we employed the GeneMANIA gene 

interaction prediction server (www.genemania.org) [20], using the default weighting 

method. We considered those genes that interacted with each other to form a pathway. The 

ARTP method was then used to obtain gene and pathway p-values for associations with each 

outcome. Permutation p-values were obtained by permuting the outcome vector (i.e., case-

control status, ER status, or LN status, as appropriate) 10,000 times, while adjusting for age 

and proportion of European ancestry, using the default truncation points. Since permutation 

testing is a very conservative method for controlling the family-wise Type I error rate, we 

chose the more liberal p ≤0.10 as the gene and/or pathway significance threshold. Analyses 

were performed using the R package “ARTP”, version 2.0.4 (R Foundation for Statistical 

Computing, Vienna, Austria).

The ARTP method provides an overall test of whether variants in each gene or pathway are 

associated with risk, but it does not provide an estimate of the magnitude or direction of the 

association. Therefore, multi-allelic risk scores were constructed to estimate the risk of 

breast cancer associated with genes found to be significant in ARTP analyses [21]. For each 

outcome in which one or more genes were significant at pARTP≤0.10, SNPs in these 

significant genes were included if the additive single-SNP model OR was <0.95 or >1.05. If 
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the additive model OR for a given SNP was between 0.95–1.05, the association was 

considered null and the SNP was excluded from the summary score. For each SNP, the 

direction of the association with its respective outcome (positive or inverse) was determined 

using the additive single-SNP model. SNPs with positive associations were assigned 0, 1, 

and 2 at-risk alleles, and SNPs with inverse associations were assigned 2, 1, and 0 at-risk 

alleles. For each outcome, the summary score SNPs were added together; participants 

missing genotype for one or more SNPs were not assigned a summary score, to avoid 

misclassification with respect to number of at-risk alleles.

Summary scores were included as continuous variables in logistic regression models. Age 

and proportion of European ancestry were included as covariates in minimally adjusted 

models. Participant and tumor characteristics that were significant at p<0.05 in EA or AA 

comparisons were included as additional covariates in fully adjusted models. P-values 

derived from the logistic regression models were adjusted for multiple comparisons using 

the FDR method.

3. Results

Selected participant characteristics are shown in Table 1. When the case group was restricted 

to those with invasive tumors, the distribution of characteristics between cases and controls 

was similar among both EA and AA participants (data not shown). When compared by ER 

and LN status, characteristics were generally similar for both EA and AA cases. LN− cases 

tended to be older than LN+ cases in both ancestral groups. Among AA cases, women who 

were LN+ were significantly more likely to be premenopausal than those who were LN− 

(data not shown).

Genotype and allele frequencies were compared between EA and AA controls and results 

are shown in Supplementary Table 2. For most of the SNPs we measured, genotype and 

allele frequencies were significantly different between the groups, after Bonferroni 

correction for multiple comparisons.

Results of single-SNP analyses, under the additive and dominant models, for comparisons 

by ER status and LN status are shown in Supplementary Tables 3 and 4, respectively. After 

FDR adjustment, none of the associations remained significant.

Using GeneMANIA, we found that, by including the ESR1 (ERα) gene, all of the 

metastasis-associated genes selected for this study could be linked, as shown in 

Supplementary Figure 1. We therefore considered the 12 genes included in this study to be 

components of a “metastasis pathway” for ARTP analysis. The log10-transformed gene and 

pathway p-values for each outcome are shown in Figure 1; the raw p-values are provided in 

Supplementary Table 5.

3.1. ARTP results in EA women

In EA women (Figure 1A), the overall pathway was significant only when all cases and 

controls were compared (pARTP=0.10). In the analysis of all cases vs. controls and when 

restricted to cases with invasive tumors vs. controls, the MTA2 gene was highly significant 
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(pARTP=0.004 and pARTP=0.01, respectively). Risk of LN+ disease was significantly 

associated with SNAI1 (pARTP=0.10), CD82 (pARTP=0.05), NME1 (pARTP=0.10), and 

CTNNB1 (pARTP=0.09). When LN− cases were compared to controls, the KISS1 
(pARTP=0.10) and MTA2 (pARTP=0.01) genes were significant. In case-case analysis, 

positive LN status was significantly associated with the SNAI1 (pARTP=0.01) and CTNNB1 
(pARTP=0.06) genes. When stratified by ER status, the MTA2 gene (pARTP=0.02) was 

significantly associated with risk of ER+ breast cancer, while the MTA2 (pARTP=0.08) and 

SATB1 (pARTP=0.03) genes were significantly associated with risk of ER− breast cancer. 

None of the genes were significant in case-case analysis.

3.2. ARTP results in AA women

In AA women (Figure 1B), fewer significant associations were observed. Risk of LN+ breast 

cancer was significantly associated with the CDH1 gene (pARTP=0.10). In case-case 

analysis, SIPA1 was significantly associated with negative ER status (pARTP=0.09) and when 

compared to controls (pARTP=0.10). None of the overall pathways were significant, nor were 

genes in any of the other outcomes.

3.3. Multi-allelic risk score results in EA women

In EA women, risk scores made from two SNPs in MTA2 were associated with increased 

risk of breast cancer among all cases and when limited to invasive breast cancer in fully 

adjusted models (Table 2; all cases vs. controls OR=1.15, 95% CI 1.04–1.26, pFDR=0.01; 

invasive cases vs. controls OR=1.19, 95% CI 1.07–1.33, pFDR=0.003). When combined, 

twenty-seven SNPs in the SNAI1, CD82, NME1, and CTNNB1 genes were significantly 

associated with risk of LN+ breast cancer (OR=1.09, 95% CI 1.04–1.14, pFDR=0.001). 

Similar findings were observed for the comparison of LN− cases to controls, using a risk 

score composed of five SNPs in the MTA2 and KISS1 genes (OR=1.18, 95% CI 1.08–1.29, 

pFDR=0.002). Two SNPs in MTA2 and 13 SNPs in MTA2 and SATB1 were used to 

construct risk scores for ER+ and ER− cases, respectively, compared to controls. The 

MTA2-score was significantly associated with risk of ER+ breast cancer (OR=1.16, 95% CI 

1.05–1.30, pFDR=0.01), and the MTA2/SATB1-score with ER− disease (OR=1.12, 95% CI 

1.05–1.20, pFDR=0.003). In case-case analysis, the risk score comprised of six SNPs in 

SNAI1 and CTNNB1 was significantly associated with positive LN status, even when 

adjusting for HER2 status, tumor grade, and tumor size (OR=1.15, 95% CI 1.01–1.31, 

pFDR=0.04).

3.4. Multi-allelic risk score results in AA women

In AA women, the multi-allelic risk score composed of 19 SNPs in the CDH1 gene was 

significantly associated with increased risk of LN+ breast cancer (Table 2; OR=1.13, 95% 

CI 1.07–1.19, pFDR=0.0003). Five SNPs in SIPA1 were used to make risk scores for 

analyses of ER status in case-control and case-case analyses. When compared to controls, 

the SIPA1 risk score was significantly associated with increased risk of ER− breast cancer 

(OR=1.16, 95% CI 1.02–1.31, pFDR=0.03). In case-case analysis, however, the association 

was not significant when adjusted for PR status, tumor grade, tumor size, and stage.
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4. Discussion

In this study, although no single-SNP association remained significant after correction for 

multiple comparisons, the gene-based ARTP analyses, which are implicitly controlled for 

multiple comparisons via permutation testing, revealed several significant gene-level 

associations in EA (MTA2 with overall, ER+, ER−, and LN− breast cancer; SATB1 with ER

− breast cancer; KISS1 with LN− breast cancer; and SNAI1, CTNNB1, CD82, and NME1 
with LN+ breast cancer) and AA (CDH1 with LN+ breast cancer; SIPA1 with ER− breast 

cancer) participants.

MTA2 has histone deacetylase activity and is a subunit of Mi-2/NuRD chromatin 

remodeling complexes [22]. By interacting with Twist1, a transcription factor that is a 

master regulator of EMT, MTA2 mediates repression of E-cadherin [23]. Furthermore, by 

binding to ERα and acting as a repressor, MTA2 modulates acetylation and transcriptional 

activity of ERα [24]. One of the two SNPs included in the gene-based analysis, rs11231156, 

is predicted by RegulomeDB [25] to be likely to affect transcription binding and is linked to 

expression of a gene target (RegulomeDB score 1f).

SATB1 is a nuclear matrix and scaffold attachment region binding protein [26] that acts as a 

genome organizer [27]. Gene expression profiling of the metastatic breast cancer cell line 

MDA-MB-231 has shown that, among others, SATB1 downregulates CTNNB1, CDH1, 

BRMS1, CD82, KISS1, and NME1 [7]. One study examining SNPs in SATB1 with respect 

to breast cancer found that homozygous carriers of the −3600T/−3363A/−2984C haplotype 

had improved overall survival [28]. We genotyped rs1475469, which is in strong LD with 

−2984C>T (rs6762753; r2=0.96; CEU population, 1000 Genomes Phase 3 data). 

Furthermore, using the GRASP (Genome-wide Repository of Associations between SNPs 

and Phenotypes) database [29], we found that two SNPs included in the gene-based analysis, 

rs4129096 and rs9714119, were associated with breast cancer mortality at p=0.01 and 

p=0.0006, respectively [30].

The transcription factor SNAI1 is a key developmental EMT regulator and transcriptional 

repressor of E-cadherin and ERα [31–33]. Two of the variants in the gene-based analysis, 

rs6020177 and rs6091080, are predicted by RegulomeDB to affect binding (scores of 1f and 

2b, respectively). While the role of SNAI1 variants in LN metastasis has not previously been 

examined, the variant allele of the nonsynonymous SNP rs4647958 has been associated with 

reduced overall risk of breast cancer among women with older age at first pregnancy [34].

The transcriptional co-factor and structural protein β-catenin (CTNNB1) links E-cadherin 

(CDH1) to the actin cytoskeleton and is the central protein of the Wnt signaling pathway, 

which regulates cell proliferation, differentiation, and apoptosis [35]. Two variants 

(rs4135385 and rs1307263) have previously been examined using a candidate gene 

approach, although not in EA or AA populations, with conflicting results as to breast cancer 

risk [36,37].

CD82, NME1, and KISS1 are metastasis suppressor genes, which inhibit metastatic 

formation without affecting primary tumor growth. CD82/KAI1 is a cell surface 

glycoprotein that interacts with the Duffy antigen chemokine receptor, an endothelial cell 
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surface protein, to anchor tumor cells to vascular endothelial cells, inducing tumor cell 

senescence and suppressing metastatic spread [38].

NME1 (also known as NM23-H1) is regulated by p53 and estrogen [39,40], and affects 

expression of genes involved in cell migration, apoptosis, and angiogenesis through its 

interaction with ERα [41]. Two promoter region SNPs (rs2302254 and rs16949649), both 

included in our analysis, have been implicated in an increased risk of relapse, metastasis, 

and breast cancer-specific mortality [42] and are predicted by RegulomeDB to be likely to 

affect binding (scores of 2b and 1f, respectively).

KISS1 appears to be involved in the NF-κB and ER signaling pathways. Induction of KISS1 
expression resulted in decreased expression of Snail2, a transcription factor involved in 

EMT, and an increase in E-cadherin expression [43], indicating that one metastasis 

suppressive function of KISS1 is to inhibit EMT and maintain the epithelial phenotype. One 

SNP we examined, rs3795573, was predicted to affect binding (RegulomeDB score 2b). One 

prior study found that rs5780218 was significantly associated with risk of breast cancer 

among Mexican patients [44], but this SNP is not in LD with any of the ones we included.

CDH1 is a tumor suppressor and metastasis suppressor, the loss of which promotes tumor 

cell invasiveness and induces EMT in experimental models. E-cadherin (CDH1) is a 

calcium-dependent cell-cell adhesion protein that is crucial for maintaining cell polarity, 

epithelial architecture and structural integrity, and preserving cell-cell interactions [35]. 

Several studies have examined polymorphisms in CDH1 in relation to breast cancer risk or 

prognosis, with conflicting results [34,45–50], although few data exist for AA populations. 

Four of the SNPs included in the gene-based analysis are predicted to affect binding by 

RegulomeDB (rs7188750, 1b; rs9941051, 1f; rs10431923, 1f; rs9940250, 2b).

SIPA1 catalyzes the hydrolysis of guanosine triphosphate to guanosine diphosphate and has 

been shown to regulate cell adhesion [10]. Several SIPA1 variants have been studied, mainly 

in white populations, but associations with breast cancer risk and survival have not been 

consistent [51,52]. In one study, rs931127 (promoter region) and rs746429, a synonymous 

SNP (Ala920Ala), were associated with increased likelihood of having nodal metastases at 

diagnosis, while a nonsynonymous SNP, rs3741378 (Ser182Phe), was associated with ER 

and PR negative tumors [53]. We previously observed an increased likelihood of the HER2-

expressing subtype, which includes ER− tumors, in women with the variant rs3741378 

genotype, although the estimate was imprecise due to small numbers [54]. Here, we found 

that SIPA1 variants, including rs3741378, were associated with ER− breast cancer, in case-

control and case-case analyses, in AA women.

Strengths of this study include the use of in-person interviews to gather detailed information 

on family history and hormone-related variables, which permitted greater control of 

potential confounding variables. In addition, this study used a panel of 100 AIMs to address 

population stratification within categorical racial groups, a well-known source of 

confounding due to admixture in genetic epidemiology studies. AIMs allow for estimation 

of individual ancestral proportions, which can then be included as a covariate in multivariate 

models. African populations are known to be more genetically diverse than non-African 
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populations [55]. Admixture with individuals of European ancestry has further contributed 

to genetic diversity in AAs. The panel we selected has been shown to reliably estimate the 

proportion of European ancestry in AA individuals, using data from the Black Women’s 

Health Study [16]. Since these AIMs were designed to capture admixture in AAs, it is 

unclear how well they capture admixture in EAs; however, since there is less admixture in 

EA groups, confounding is less likely to have affected our results.

Our study is limited, however, by the inclusion of only 12 genes; it is likely that other 

metastasis-related genes contribute to breast cancer development, particularly LN+ tumors, 

perhaps by interacting with the genes we have investigated here. We examined common 

variants by identifying a set of tag SNPs within each gene, but there may be other important 

genetic contributions that we were unable to examine because of sample size limitations, 

such as rare variation and gene-environment interactions. We also restricted our definition of 

gene region to +/− 5kb upstream and downstream. However, since SNPs that affect gene 

expression may be found at distances further than this, it is possible that SNPs with 

important functional effects were missed by our definition.

We did not have recurrence or survival data available to examine long-term outcomes, which 

may be important for understanding the effects of these variants on metastasis, and our 

sample size precluded stratification by tumor subtype. Furthermore, we were unable to 

compare early-stage and metastatic breast cancer cases, due to sample size limitations; our 

study contained only one EA and four AA stage IV cases. Instead, we examined associations 

with LN status, a strong prognostic variable, and ER status, since ER− tumors are typically 

more aggressive and have a worse prognosis. Although ER status and LN status were 

missing for 26% and 12% of all cases and invasive tumor cases, respectively, participant 

characteristics were generally similar between those with and without known ER and LN 

status, indicating that our estimates were unlikely to be biased by missingness for these 

features.

Our study is also limited by the lack of validation using an independent population, as well 

as the fact that the sample sizes within subgroups prohibit separation into testing and 

training sets for cross-validation strategies. Finally, given the small numbers of participants 

in our subgroup analyses, our study may be underpowered to detect small effect sizes for the 

genes we examined. We therefore cannot rule out the possibility of false negative findings. 

For these reasons, additional large, well-powered studies with long-term outcome data are 

needed both to replicate the findings we report herein as well as further investigate the 

contribution of genetic variation to metastasis.

In conclusion, we found evidence suggesting that variants in different metastasis-related 

genes may affect risk of breast cancer, by LN and ER status, in EA and AA women. Several 

promising associations were identified that require confirmation and, in particular, 

investigation of SNP effects on recurrence and survival. Additional studies are needed to 

better understand the genetic basis for the development of breast cancer in different ancestral 

groups, particularly as it relates to aggressive tumor subtypes and metastatic potential.
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Abbreviations

AA African-American

AIM Ancestry informative marker

ARTP Adaptive rank truncated product

BRMS1 Breast cancer metastasis suppressor 1

CD82 CD82 molecule

CDH1 Cadherin 1, type 1, E-cadherin

CEU Utah residents with Northern and Western European ancestry

CI Confidence interval

CINJ Cancer Institute of New Jersey

CTNNB1 Catenin (cadherin-associated protein), beta 1

DNA Deoxyribonucleic acid

EA European-American

EMT Epithelial-mesenchymal transition

ER Estrogen receptor

ESR1 Estrogen receptor alpha

FDR False discovery rate

GRASP Genome-wide repository of associations between SNPs and phenotypes

HER2 Human epidermal growth factor receptor 2
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KISS1 KiSS-1 metastasis suppressor

LD Linkage disequilibrium

LN lymph node

MAF Minor allele frequency

MTA1 Metastasis-associated 1

MTA2 Metastasis-associated 1 family, member 2

MTA3 Metastasis-associated 1 family, member 3

NME1 NME/NM23 nucleoside diphosphate kinase 1

OR Odds ratio

PR Progesterone receptor

RPCI Roswell Park Cancer Institute

SATB1 Special AT-rich binding protein homeobox 1

SIPA1 Signal-induced proliferation-associated 1

SNAI1 Snail family zinc finger 1

SNP Single nucleotide polymorphism

WCHS Women’s Circle of Health Study

YRI Yoruba in Ibadan, Nigeria
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Figure 1. Adaptive rank truncated product method p-values
A. European-American women.

B. African-American women.

Pathway and gene-level permutation p-values were obtained by permuting the response 

vector 10,000 times for each outcome, using default truncation points. Permutation p-values 

are shown on the log scale; −log(p)≥1.0 (equivalent to p≤0.10) was considered significant.
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